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LETTER TO THE EDITOR 

Coarse graining, Monte Carlo renormalisation, percolation 
threshold and critical temperature in the Ising model 

D Stauffer 
Institute of Theoretical Physics, Cologne University, 5000 Koln 41, West Germany 

Received 18 September 1984 

Abstract. Finite-size scaling suggests that the super-spins corresponding to large cells in 
a Monte Carlo renormalisation scheme form at T = T, an infinite network of connected 
down spins. Our finite-size scaling assumption, Mb =f[( T -  T,)b”’] for the renormalised 
block spin magnetisation is tested by computer simulation for lattice sizes 12S3 and 2563. 

Clusters in Ising models or lattice gases are usually defined as groups of down spins 
connected by exchange forces J. If one approaches the Curie temperature T, of the 
Ising magnet from below, and looks at the phase where most spins point up, then in 
general the percolation temperature T,,,,, where the down spins form for the first time 
an infinite connected network, does not coincide with T,. For example, in the nearest- 
neighbour simple cubic Ising modi.1 T T.  is about 0.96. with a magnetisation Mperc 
of about 0.6 at this percolation threshold (Muller-Krumbhaar 1974, Heermann and 
Stauffer 1981, Kertksz et al 1983). Only in the modified cluster definition of Coniglio 
and Klein (1980), where bonds between up spins are formed randomly with probability 
1 - exp( - 2 J /  k,,T), is an infinite network of up spins connected by these additional 
bonds formed at the correct T, where the magnetisation vanishes. 

No such Coniglio-Klein bonds are taken into account in usual coarse graining 
theories (see for example Bruce and Wallace 1983) which work with a local magnetisa- 
tion thought to come from averages over cells of linear dimension b. This averaging 
is done explicitly in some Monte Carlo renormalisation methods (Swendsen 1982, 
Pawley et a1 1984, Jan et a1 1983, Kalle 1984) where the spins in a cell of length b are 
replaced by a single superspin f 1 having the orientation of the majority of the primary 
spins in that cell (with random tie breaking). Our question now is: Do these superspins 
percolate at the correct T,, i.e. is an infinite network of down cells formed for the first 
time at Tp,,,= T,? We will argue that for finite cells this is not the case but that the 
positive difference T, - T,,,,( b )  between the critical and the percolation temperature 
vanishes as b - ‘ / ”  for b + CO. 

We look at the renormalised magnetisation Mb of cells with bd spins in a d- 
dimensional (hypercubic) lattice, d < 4, of linear dimension L, with 1 << b << L. For 
b = 1, Mb simply gives the usual magnetisation of the primary spins. Our finite-size 
scaling assumption is 

M b = f [ ( T -  T , ) b ’ / ” ]  ( T +  T,, b + w )  ( 1 )  
where the correlation length (K (T,- T)-” is assumed to be much smaller than L, but 
can be smaller or larger than b. We do not assume instead 

Mb = b-@/Vf [ (  T -  T , ) b ’ / ” ]  (2) 
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where p is the critical exponent for the spontaneous magnetisation. Equation (2) 
would be correct (Fisher 1971, Landau 1976, Binder 1981) for the usual magnetisation 
measured in a system of size b ;  then b = 00 is the desired thermodynamic limit. 

In our case, however, 6 = 1 and not b = 00 corresponds to the usual magnetisation, 
whereas Mb + 1 for b +CO at fixed T below T,. For in a large enough cell below T,, 
5 << b, the relative magnetisation fluctuations are negligible, the majority of spins point 
upwards, and thus Mb = 1. Figure 1 shows qualitatively the difference between equation 
( 1 )  for our renormalised magnetisation Mb and equation (2) for the usual magnetisation 
in a system of finite size 6 ;  if b = 1, in the latter case the ‘magnetisation’ of the 
single-spin system is always il. Our renormalised magnetisation Mb of equation (1 )  
therefore is not analogous to the magnetisation in small systems, equation ( 2 ) .  Instead 
it corresponds to the probability R of percolative systems (Reynolds et a1 1980, Stauffer 
1985) to have a cluster connecting top and bottom in a cell of size b ;  this probability 
R also approaches zero or unity for large enough cells and follows the analogue of 
equation ( 1 ). 

Figure 1. Qualitative comparison of renormalised magnetisation due to cells of size b in 
a much larger system of size L (a )  equation ( 1 )  ((a, b = 1 ;  b, b large; c, b = C O )  and of the 
usual magnetisation in a finite system of size L ( b )  equation (2))  (a, L= CO; b, L large; 
c, L =  1). 

For the unrenormalised primary spins ( b  = 1 )  the percolation threshold is reached 
at T = Tper,(b = 1)  below T,, with a positive magnetisation M = M f l ? ;  for the clusters 
formed by upward oriented neighbouring b cells the percolation threshold is at Tperc( b )  
and M f r c .  Experience with dynamic renormalisation (Jan et a1 1983, Kalle 1984) 
warns against assuming MfLC = M f r c  and suggest instead, similar to percolation 
(Reynolds et a1 1980): 

MYrc = Mperc b’ (band  b‘>> 1).  (3) 

Tc - Tperc( b )I/ [ Tc - Tperc( b’)] = ( b/  b’) - ” ” (4) 

T, - Tper,( b )  b-”” (b+oo). ( 5 )  

Equations ( 1 )  and (3) give 

for large enough cells, and thus 

The reason behind equations (3)-(5) is the similarity of block spins and primary 
spins on which scaling and real space renormalisation are based: The correlations 
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between primary spins and between cells are about the same apart from factors of 
order unity, provided the distance is measured in terms of the correlation length 6. 
Therefore the concentration Mperc of up cells at the percolation threshold T,,,, is the 
same, whether the cells are large or very large. 

Direct Monte Carlo evaluation of Tp,,,( b )  might be difficult for large b and should 
be combined (Binder, private communication) with a detailed comparison of cluster 
size distributions for the renormalised superspins and the Coniglio-Klein clusters of 
primary spins. As a first step, we test here the underlying scaling assumption (1 )  on 
a CDC Cyber 205 vector computer. To satisfy 1 << b<c L our system has to be large. 
We thus made up to lo5 Monte Carlo steps per spin for L =  128 in a simple cubic 
lattice between 0.82 T, and 0.999 T,, as well as shorter runs for L = 256, using Kalle’s 
program. Our equilibrium results (at O.999Tc extrapolated to L = m )  are shown in 
figure 2. There b = 1 slightly deviates from the scaling assumption ( l ) ,  as expected, 
but larger b confirm the similarity rule ( 1 ) .  
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Figure 2. Variation of the renormalised magnetisations Mb with X = b ” ” (  T - T J /  T,. Our 
Monte Carlo data ( 1283 and 2563 simple cubic lattices) for b = 4,8, . . . as listed in the 
figure follow roughly the same curve and thus confirm equation (1). The factor b ” “  by 
which equations ( I )  and (2) differ varies by roughly a factor 2 between b = 4  and b = 16; 
thus our data contradict equation (2) .  (0, b = I ;  x, b =4; +, b = 8;  0, b = 16; V ,  b = 32). 

Thus we see little reason to doubt that the percolation threshold for clusters of 
Ising superspins in real space renormalisation converges to the desired critical tem- 
perature T, if the cell size b for these superspins goes to infinity. Our result justifies 
droplet models based on coarse-grained order parameters near T, and makes feasible 
future studies of cluster size distributions. 

We thank K Bindei and A D Bruce for suggesting this work, C Kalle for his computer 
progam, K Binder and M Barma for comments, the alumni of Cologne University for 
computer money, and the International Centre for Theoretical Physics at Trieste, Italy, 
for its hospitality at the beginning of this work. 
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